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This paper presefits a parallel version of the Fast Multipole Method (FMM). The FMM is a re-
cently developed scheme for the evaluation of the potential and force fields in systems of particles
whose interactions are Coulombic or gravitational in nature. The sequential method requires 0(N)
operations to obtain the .elds due to N charges at N points, rather than the O(N 2 ) operations
required by the direct calculation. Here, we describe the modifications necessary for implementa-
tion of the method on parallel architectures and show that the expected time requirements grow
as log N when using N processors. Numerical results are given for a shared memory machine (the
Encore Multimax 320).
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1. Introduction

Numerical methods for computing N-body interactions generally fall into two categories. Con- -L
tinuum methods are based on the fact that the potential satisfies the Poisson equation and use fast
Poisson solvers to obtain the field [6]. They are hindered by the limited resolution of the imposed
grid and the degradation of performance seen with highly non-homogeneous distributions of parti-
cles. Hierarchical methods [1, 2] are based on the fact that the field due a cluster of particles can
be represented at a great distance by the net mass acting at the center of mass. Tree structures
are used to partition space and group particles at various length scales, so that the center of mass
approximation can be applied. The CPU time requirements of these methods generally grow as
N logN. They handle non-homogeneous distributions better than the continuum methods, but -*

yield only approximate results.
The Fast Multipole Method (FMM) [5, 3, 8, 7] shares certain characteristics with the hier-

archical solvers. Tree structures are imposed to partition space, and the strategy is similar, but
analytic observations concerning multipole a icl Taylor expansions are used to produce results that
are accurate to within round-off error. The CPU time requirements are of the order O(N log(1/c)),
where c is the desired accuracy.

In this paper, we will describe a parallel version of the non-adaptive two-dimensional FMM
and present numerical results for an implementation on a shared memory machine (the Encore
Multimax 320). We note that Zhao [9] has independently developed a parallel implementation of
a non-adaptive three-dimensional multipole method for the Connection Machine.

2. Mathematical Preliminaries

In this paper, we will consider as a model the N-body problem in the complex plane C. That
is, given the positions z, and strengths qj of N charged particles, we wish to compute the net
potential 4 and electric field E at each particle position from Coulomb's law. These are given by
the expressions

O =i Re (zq, - log(z, - j ,1?

and
E(z,) = (-Re(¢'(z,)),Im(¢'(z,))) ,

respectively.
Suppose now that rn charges with strengths q, and positions zi are located within a disk of %

radius r centered at the origin. Then, it is shown in [5], that for a point z with Izi > r, the potential V
O(z) inauced by the charges is given by a multipole expansion of the form

The error in truncating the sum after s terms is

000
Oo(z) Q lz + , (2.1)= -

k=1. "-

wherem~



where

m jIq1 i and .(2.3)

i=l

In order to obtain a relative precision of c (with respect to the total charge), the number of
terms required in the series representation of € is approximately - log(c), independent of m, the
number of source charges. The Fast Multipole Method is based on making explicit use of this
result.

2.1. Translation operators

In the FMM scheme, it is necessary not only to form multipole exannrinc :;Q in (2-1), bt t.o
carry oui. a sequence of analytic transformations of the expansion coefficients. These transforma-
tions are described in the next three lemmas. Detailed proofs can be found in [5]. The first, Lemma
2.1, provides a mechanism for shifting the center of a multipole expansion.

Lemma 2.1. (Translation of a Multipole Expansion) Suppose that

O(z) = aolog(z - z) + (: k (2.4)
k=1 (z - zo)k

is a multipole expansion of the potential due to a set of m charges of strengths qjq,.. ., qm, all of
which are located inside the circle D of radius R with center at zo. Then for z outside the circle
D, of radius (R + Izol) and center at the origin,

O(z) = alog(z) + , (2.5)

wh ere
b a = zl + ' (2.6)

k=1

with (k) the binomial coefficients. Furthermore, for an' s > 1,

O(z) - ao01og(z)- - 2

where A is defined in (2.3) and

IzoI+
c z

Lemma 2.2 describes the conversion of a multipole expansion into a local (Taylor) expansion
inside a circular region of analyticity.

Lemma 2.2. (Conversion of a Multipole Expansion into a Local Expansion) Suppose
that m charges of strengths qj, q2,..., qm are located inside the circle D with radius R and center
at z0 , and that Izol > (c + 1)R with c > 1. Then the corresponding multipole expansion (2.4)
converges inside the circle D2 of radius R centered about the origin. Inside D2 , the potential due

to the charges is described by a power series:

ZbW b .z', (2.8)
1=0
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where
00

bo = aolog(-zo) + (2.9)
k=l O

and
ao 1- a ( + k - (_l)k for > (210)b =- -1  + - o k-1 )o-

"z0  k=1 0

Furthermore, for any s max (2, 2-, an error bound for the truncated series is given by

A(4c(s + c)(c +1+c 2) +1O(z) - bi . < c + 1) +, (2.11) ...

1=0(cW

where A is defined in (2.3) and e is the base of natural logarithms.

Lemma 2.3 provides a formula for shifting the center of a local expansion within a region of , .
analyticity. This translation is exact, and no error bound is needed.

Lemma 2.3. (Translation of a Local Expansion) For any complex zo,z and {ak), k =

0, 1,2,. .n,
n n

Zak(z- zo)k = b z' (2.12)
k=o 1=0 (2.12)

where

b= ak ) z 0 )k (2.13)
k=1

3. Informal Description of the FMM S.

In this section, we briefly outline the sequential FMM procedure. A more detailed discussion %
is available in [5, 7]. The algorithm uses a divide and conquer strategy to cluster particles at
various levels of spatial discretization, and then uses multipole and Taylor expansions to evaluate
the interactions between distant clusters. Once all distant interactions are accounted for by this
expansion technique, the interactions between neighboring particles are computed by the direct
application of the pairwise force law.

We now introduce the notation necessary for a description of the algorithm. Since we are
considering the non-adaptive scheme, we assume that N charges are more or less homogeneously
distributed within a square with sides of length one, and refer to this square as the computational
box. We impose a hierarchy of meshes on the computational box which refine it into smaller and
smaller regions. More specifically, mesh level 0 refers to the entire computational box, while mesh
level 1 + 1 is obtained recursively from level I by subdividing each box into four equal parts. A tree
structure is imposed on this hierarchy, so that if ibox is a box at level 1, then the four boxes at level
1 + 1 obtained by its subdivision are considered its children. In general, the maximum number of
refinements (the tree depth) is chosen to be on the order of log4 N, at which point there is on the
order of 1 particle in each box at the finest level. For every box i at level 1, we define the nearest
neighbors to be the box itself and any other box at the same level with which it shares a boundary I
point. There are clearly at most 9 nearest neighbors. k

Two boxes (at a given level) with sides of length D, are said to be well-separated if they are
separated by a distance D. It is shown in [7] that, in using s-term expansions to account for

3
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the intei,,ctinins between well-separated boxes, the error bounds (2.2), (2.7) and (2.11) apply with
c = (4 - V/)/v2- ; 1.8. For a given precision c, we therefore choose s = r- logc(c)1.

Both multipole and local expansions are associated with each box. -pl,i is the s-term multipole
expansion about the center of box i at level I which describes the far field potential due to the
particles contained inside the box. ql/,, is the s-term local expansion about the center of box i
at level I which describes the potential field due to all particles outside the box and its nearest
neighbors. lij,j is the s-term local expansion about the center of box i at level I which describes the
potential field due to all particles outside i's parent box and the parent box's nearest neighbors.
Finally, an interaction list is associated with each box i at level 1. This is the set of boxes which
are children of the nearest neighbors of i's parent and which are well-separated from box i.

The algorithm computes interactions between groups of particles at the coarsest possible mesh
level. Two passes are executed.

Initialization Choose a level of refinement n z [log4 NJ, a precision c, and set s = F- log,(c)J.
Assign particles to boxes at finest mesh level.

Upward Pass

Step 1: Form multipole expansion 4 ,,i about the box center for each box i at finest mesh level.
Uses equation (2.1).

Step 2: Recursively form multipole expansions about the centers of all boxes at all coarser mesh
levels, each expansion representing the potential field due to all particles contained in the box. Uses
Lemma 2.1.

In the downward pass, the local expansions 4I1,i are formed for all boxes, beginning at the
coarsest level. This process is somewhat more complex. Suppose, however, that at level 1 - 1, the
local expansion 1-1,i has been computed. Then Lemma 2.3 can be used to shift the expansion
to each of the box's children. For each child box j at level 1, what we have obtained is a local
representation of the field due to all particles outside the parent's nearest neighbors, namely 1'j,j.
The interaction list defined above is precisely the set of boxes whose contribution to the potential
must be added to 's,i to create 41,i. The initialization of this pass is simple. Since there are no
well-separated boxes at level 0 or 1, we may set g0,i, ,, 'i,, and I2,i to zero.

Downward Pass

Steps 3,4: Begin at level 2, and proceed to finer levels as follows: form 'Qh,iboz by using Lemma 2.2
to convert the multipole expansion 4Djj of each box j in the interaction list of box ibox to a local
expansion about the center of box ibox, adding these local expansions together, and adding the
result to ',,box. If finest level has been reached, process is complete. Otherwise form the expansion

911+1,j for ibox's children by using Lemma 2.3 to expand T',iboz about the children's box centers
and continue procedure.

Step 5: Evaluate local expansions at particle positions to obtain the far-field potential and/or force.

Step 6: Compute potential (or force) due to particles in nearest neighbor boxes directly.

Step 7: For every particle, add direct and far-field terms together.

4. Description of the parallel algorithm

The algorithm described in the previous section has several opportunities for parallelism. The
best of these opportunities are the completely parallel operations such as the computation of the
initial moments and the evaluation of the local expansions for each particle. The other parallel
operations require some coordination between processors. For example, evaluation of the forces
between particles in neighboring boxes in step 6 requires secure data access if Newton's third law
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Ta19  Tdir Tat; Tdi, Speedup Speedup 1.
N P p = l p= 16 p = 16 Alg Dir
625 14 54 1.2 3.45 11.7 15.7
1250 52 216 3.6 13.9 14.4 15.5
2500 68 872 4.6 54.9 14.7 15.9 I
5000 235 3490 15.5 220.8 15.2 15.9
10000 301 14020 19.7 910.4 15.3 15.4
20000 1008 56385 65.0 3560.4 15.5 15.8

Table 1: Table of times for algorithm (alg) and direct method
(dir) on Encore Multimax 320. All times in seconds.
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Figure 1: Speedup for the calculation of the far-field by

the Fast Multipole Method. The labels are the number of do ~ ~
particles.

is used. However, it is the reductions, the communications between mesh levels, that cause the

greatest difficulty.
The fact that the entire program is not completely parallel opens the question of how efficient /e0

the algorithm can be, particularly on a large number of processors. We will ades this by analyzing
the computational complexity of the parallel algorithm. We do not discuss the initialization of the
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Figure 2: Speedup for the near-field calculation (step 6).
The labels are the number of particles.

algorithm since the initialization is essentially a parallel sort and is performed only at the beginning
of a compuLation. Since a common use of the Fast Multipole Method is to compute the forces at
each time step in a dynamical simulation, this initial sort may be amortized over all the time steps.
Further, in a time dependent calculation, it is possible to exploit slowly varying changes in the
potential to reduce the amount of computation; we will not consider this effect either.

For the actual implementation, we can consider each of the steps in the algorithm separately.
We use the term "communication" to denote any coordination between processors. In a message
passing system, this would be a message; in a shared memory system, this would be some critical
section (e.g., a spinlock). We use N to denote the number of particles, n the number of levels, and
p the number of processors. Let B denote the average number of particles per box at the finest

level. Then N = B4".

* Upward Pass
Step 1: Formation of expansions at finest level. There is no communication; the complexity is N/p.
Step 2: Merge upward. Communication is within box and with parent box. The complexity is

i---- i=1og 4 p "=O
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Figure 3: Parallel efficiency for the full algorithm. The II
labels are the number of particles.

times the cost per box. This is one of the most important terms because it gives a limit on the
available parallelism. The second sum shows the bottleneck in the reduction: when there are fewer U
than p boxes, some processors go idle. This bottleneck is an essential part of the algorithm.
Downward pass
Steps 3,4: Convert the multipole expansions into local expansions and move down. The complexity
is of the same form as above (but with a different constant).
Step 5: Evaluation of local expansions at the finest level. This is perfectly parallel and has corn-
plexity N/p.
Step 6: Compute the potential or force due to particles in neighboring boxes directly. This involves
the neighboring boxes through direct interaction. There is no "reduction" overhead; however,
there is some communication due to the fact that the field at a particle position may be updated
by several adjacent processors/particles. The complexity is roughly 4'B 2 /p = NB/p. If Newton's
third law is not used, this is completely parallel (i.e., we can eliminate any possibility of memory
contention at the cost of twice as much arithmetic).
Step 7: Add the components (direct and far-cld) together at each partich. This is perfectly
parallel; the complexity is AN/p.
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Summing the contributions from each step, the overall complexity is

aN cN dNB
T= - + blog 4 p+ y + +e(N,p) (4.1)P BP p(41

where a, b, c, and d are constants determined by the floating point speed and the requested preci-
sion, and e is a lower order term which includes things like the communication or synchronization
overhead.

One important observation to be made concerns the choice of the parameter B which deter-
mines the number of refinement levels n. For the uni-processor case, this is discussed in [3]. In
the parallel case, there is a temptation to use B = 1. While a value for B of 1 has the advantage
of placing (at most) one particle per processor, this can result in a serious loss In efficiency. The
optimal value of B, denoted Bopj, for a given N and p, is the one that minimizes the time T in
(4.1):

dT cN dN-P+- = 0,
P

or

opt (4.2)
d

While the exact values for c and d are difficult to determine (they depend on the floating point
rates, memory speed, and details of the coding and the compiler used), c is roughly proportional
to 25s 2 , where s is the number of terms in the expansion, while d is roughly 9, the number of
neighboring boxes. The optimal blocking is therefore Born ; 2s. For single precision accuracy,
s 2 15, so that Bopt ; 30 and the execution time for B = 1 is about 15 times slower. Note that
Born is independent of the number of processors, and should be used for both parallel and sequential
implementations.

It is clear from (4.1) that with O(N) processors, the overall complexity is 0(log.N). The
parallel efficiency can be estimated as the ratio of the time on a single processor (without the
overhead) to p times the time on p processors:

efficiency =N

p ( + b log4 p + e(N, p))

- 1 (4.3)

1+ log 4 p +
pb PZ1- -- logap- -N

arN aNP

where a = a - c/B + dB.

It is interesting to look at the behavior of equation (4.3) for the cases B = 1 and for B = BoI
with p = N/B (i.e., one box at the finest level per processor). We do not consider using more than
one processor per box. In the first case, the efficiency is roughly

4 b1- -- blog 4 .N

a 11

where we have neglected the overhead term r(p, N). With the optimal B, the efficiency is

b N
1 aPt 10g 4 "opt

8
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To give an idea of what this means, assume that the B = 1 case gives 907c, efficiency. and let ,,
= 10 (this is quite conservative). Then the choice B = B,t will achieve more than 997(

Liticiency. Moreover, if the B = 1 case gives 10% efficiency, the choice B = Bopt will achieve more
than 90% efficiency (assuming that the parallel overhead terms e(p, N) are negligible). 0

The above analysis gets even worse if we consider the case of true speedup, defined as

Time for best uni-processor algorithm

Time for parallel algorithm P'

In this case, the efficiency for B = 1 is roughly 2/Bot times the formula in equation (4.3). In 0
short, for good processor utilization, an implementation of the Fast Multipole Method should use
the optimal blocking factor Bot."

Our last consideration is given to minimizing the total time T, given a fixed number of particles
N but varying the number of processors p. In this case, the minimum time depends in a complicated " "

way on the various parameters, but is achieved at roughly p = N. This can be seen from the
efficiency figures above. For example, if the case B = 1 gave 907 parallel efficiency relative to a
sequential program with B = 1, it would give 18% efficiency relative to a sequential program with
B0,p = 10. Each processor is busy roughly one fifth of the time. However, there are 10 times as
many processors for B = 1 as for B = 10, so the total time for B = 1 and p = N is roughly half
that for B = 10 an I p = N/B. Thus, even with the loss of efficiency, the B = 1 case has a smaller .

absolute time. This fact is of interest only when there are enormous numbers of processors available,
and when it is impractical to use the excess processors to work together on the computations for
each box. '

4.1. Comments on the parallel implementation %

Our parallel implementation is based on a version of the serial code described in [5]. The implemen-
tation is a "minimum distance" change, and does not attempt to rearrange the computation to be
more parallelizable. In particular, it is possible to identify subclasses of boxes for which completely
parallel operations may be performed; within these classes it can be proven that no data-access
conflicts can occur [4]. This can reduce the overhead in steps 2, 3, and 4 by reducing the number 0

of memory locks (in a shared memory implementation) or the number of messages (in a message
passing implementation). .

5. Experimental Results

These results are for the non-adaptive algorithm, and do not include the work of the initial sorting
of the particles. The data in Table 1 were obtained on an Encore Multimax 320 with 18 processors.
There are two important points to remember in interpreting these times. One is that they were taken
on a time sharing system; even though no other users were present, various daemons wiil consume S
some resources. To reduce this effect, we used only 16 of the 18 processors in our experiments. ,'

The second is the effect of the choice of number of levels Wt.Vle the complexity estimates predict .r
time linear in the number of particles, in fact the actual times display.a "ratchet" behavior as the
number of levels increase. However, over a large enough range of number of particles, the behavior
is linear.

Figures 1-3 show a breakdown of the results for the Encore Multimax 320. Figure 1 shows the.
speedup for the calculation of the far field by the Fast Multipole Method. Note that the results
are clustered into four groups; these represent the number of levels (4-7). The speedup is lower
when the number of processors is not a power of four, a result of the poor load-balancing in the " :
reduction stages (steps 2-4). Figure 2 shows the speedup for the calculation of the near field in - %
step 6. The deviation from perfect speedup is due mainly to the overhead connected with secure
access to data (critical sections). Figure 3 shows the overall efficiency. Note that even for small
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rumbers of particles 757( efficiency is achieved and for 5000 or more particles, 95X efficiency is
achieved.

A version of the three-dimensional multipole method has been implemented and studied by 6

Zhao [9]. His results show the pedicted logN gi wth as N ran from 64 to 16384. His timings, done
on the Connection Machine, are somewhat slow. Different formulations of the algorithm presented
here, in particular with respect to constant terms or terms in -logc, should significantly reduce
the timings.

6. Conclusions

Our results have shown that the Fast Multipole Method is very suitable for shared memory parallel
computers. Both our experience and the results of Zhao indicated that it is suitable for message
passing parallel computers as well. The overall complexity of the N-body calculation (with p = NV
processors) is log N; for fixed N it is N/p +i-ogp.

The non-adaptive algorithm described here has very regular memory access or communication
patterns which can be exploited to reduce the parallel overhead. Many of these are intrinsic to the
Fast Multipole Method itself, and should be exploitable by the adaptive version.
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